Skip to contents

Given a data.frame() of sample information (sample_info) with columns capture_area, group, and spaceranger_dir, Write new high-resolution images for use as input to Fiji https://imagej.net/software/fiji/. Particularly when capture areas come from different slides, there is a risk of significant scale differences among SpaceRanger's tissue_hires_image.png images; that is, the physical distance represented by a pixel from each capture area may differ nontrivially, leading to a distance-distorted output image, and inconsistent scaling when later transforming pixel coordinates. This function writes approximately high-res images whose pixels are of equal physical size within each group, then adds intra_group_scalar and group_hires_scalef columns to sample_info. intra_group_scalar gives the scalar by a which a given capture area's tissue_hires_image.png image and pixel coordinates must be multiplied to match the scale of other group members; group_hires_scalef gives the new tissue_hires_scalef (as from SpaceRanger's scalefactors_json.json file) appropriate for every capture area from the group.

Usage

rescale_fiji_inputs(sample_info, out_dir)

Arguments

sample_info

A data.frame() with columns capture_area, group, fiji_xml_path, fiji_image_path, spaceranger_dir, intra_group_scalar, and group_hires_scalef. The last two are made by rescale_fiji_inputs().

out_dir

A character(1) vector giving a path to a directory to place the output images, which must exist in advance.

Value

A tibble: a copy of sample_info with additional columns intra_group_scalar and group_hires_scalef.

Author

Nicholas J. Eagles

Examples

#    Define sample information for the example human brain data
sample_info <- dplyr::tibble(
    group = "Br2719",
    capture_area = c("V13B23-283_A1", "V13B23-283_C1", "V13B23-283_D1")
)
#   Add 'spaceranger_dir' column
sr_dir <- tempdir()
temp <- unzip(
    spatialLIBD::fetch_data("visiumStitched_brain_spaceranger"),
    exdir = sr_dir
)
#> 2024-10-24 20:16:55.189005 loading file /github/home/.cache/R/BiocFileCache/7603a007f35_visiumStitched_brain_spaceranger.zip%3Frlkey%3Dbdgjc6mgy1ierdad6h6v5g29c%26dl%3D1
sample_info$spaceranger_dir <- file.path(
    sr_dir, sample_info$capture_area, "outs", "spatial"
)

#   Add Fiji-output-related columns
fiji_dir <- tempdir()
temp <- unzip(
    spatialLIBD::fetch_data("visiumStitched_brain_Fiji_out"),
    exdir = fiji_dir
)
#> 2024-10-24 20:16:57.70092 loading file /github/home/.cache/R/BiocFileCache/76048672d76_visiumStitched_brain_fiji_out.zip%3Frlkey%3Dptwal8f5zxakzejwd0oqw0lhj%26dl%3D1
sample_info$fiji_xml_path <- temp[grep("xml$", temp)]
sample_info$fiji_image_path <- temp[grep("png$", temp)]

## Re-size images and add more information to the sample_info
out_dir <- tempdir()
sample_info_new <- rescale_fiji_inputs(sample_info, out_dir = out_dir)

#    Scale factors are computed that are necessary downstream (i.e. with
#    prep_fiji_*() functions)
sample_info_new[, setdiff(colnames(sample_info_new), colnames(sample_info))]
#> # A tibble: 3 × 2
#>   intra_group_scalar group_hires_scalef
#>                <dbl>              <dbl>
#> 1               1.00             0.0825
#> 2               1.00             0.0825
#> 3               1                0.0825

#    Image are produced that are ready for alignment in Fiji
list.files(out_dir)
#>  [1] "Br2719"                                   
#>  [2] "Br2719.png"                               
#>  [3] "Br2719.xml"                               
#>  [4] "HDF5Array_dataset_creation_global_counter"
#>  [5] "HDF5Array_dump"                           
#>  [6] "HDF5Array_dump_log"                       
#>  [7] "HDF5Array_dump_names_global_counter"      
#>  [8] "V13B23-283_A1"                            
#>  [9] "V13B23-283_A1.png"                        
#> [10] "V13B23-283_C1"                            
#> [11] "V13B23-283_C1.png"                        
#> [12] "V13B23-283_D1"                            
#> [13] "V13B23-283_D1.png"                        
#> [14] "bslib-5ff8f344b905f9ef2a33199151429212"   
#> [15] "downlit"                                  
#> [16] "file363713b563ec"                         
#> [17] "file36373384864b"                         
#> [18] "file36373a2556b5"                         
#> [19] "file36374b3b5235"                         
#> [20] "file363755368c23"                         
#> [21] "file36377985d4b"