Basics

Install DeconvoBuddies

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. DeconvoBuddies is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install DeconvoBuddies by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("DeconvoBuddies")

## Check that you have a valid Bioconductor installation
BiocManager::valid()

Required knowledge

DeconvoBuddies is based on many other packages and in particular in those that have implemented the infrastructure needed for dealing with snRNA-seq data. That is, packages like SingleCellExperiment.

If you are asking yourself the question “Where do I start using Bioconductor?” you might be interested in this blog post.

Asking for help

As package developers, we try to explain clearly how to use our packages and in which order to use the functions. But R and Bioconductor have a steep learning curve so it is critical to learn where to ask for help. The blog post quoted above mentions some but we would like to highlight the Bioconductor support site as the main resource for getting help: remember to use the DeconvoBuddies tag and check the older posts. Other alternatives are available such as creating GitHub issues and tweeting. However, please note that if you want to receive help you should adhere to the posting guidelines. It is particularly critical that you provide a small reproducible example and your session information so package developers can track down the source of the error.

Citing DeconvoBuddies

We hope that DeconvoBuddies will be useful for your research. Please use the following information to cite the package and the overall approach. Thank you!

## Citation info
citation("DeconvoBuddies")
#> To cite package 'DeconvoBuddies' in publications use:
#> 
#>   Huuki-Myers LA, Maynard KR, Hicks SC, Zandi P, Kleinman JE, Hyde TM,
#>   Goes FS, Collado-Torres L (2024). _DeconvoBuddies: a R/Bioconductor
#>   package with deconvolution helper functions_.
#>   doi:10.18129/B9.bioc.DeconvoBuddies
#>   <https://doi.org/10.18129/B9.bioc.DeconvoBuddies>,
#>   https://github.com/LieberInstitute/DeconvoBuddies/DeconvoBuddies - R
#>   package version 0.99.8,
#>   <http://www.bioconductor.org/packages/DeconvoBuddies>.
#> 
#>   Huuki-Myers LA, Montgomery KD, Kwon SH, Cinquemani S, Eagles NJ,
#>   Gonzalez-Padilla D, Maden SK, Kleinman JE, Hyde TM, Hicks SC, Maynard
#>   KR, Collado-Torres L (2024). "Benchmark of cellular deconvolution
#>   methods using a multi-assay reference dataset from postmortem human
#>   prefrontal cortex." _bioRxiv_. doi:10.1101/2024.02.09.579665
#>   <https://doi.org/10.1101/2024.02.09.579665>,
#>   <https://doi.org/10.1101/2024.02.09.579665>.
#> 
#> To see these entries in BibTeX format, use 'print(<citation>,
#> bibtex=TRUE)', 'toBibtex(.)', or set
#> 'options(citation.bibtex.max=999)'.

Quick start to using DeconvoBuddies

Let’s load some packages we’ll use in this vignette.

Access Data

Use fetch_deconvo_data to download RNA sequencing data from the Human DLPFC (Huuki-Myers, Montgomery, Kwon, Cinquemani, Eagles, Gonzalez-Padilla, Maden, Kleinman, Hyde, Hicks, Maynard, and Collado-Torres, 2024).

  • rse_gene: 110 samples of bulk RNA-seq. [110 bulk RNA-seq samples x 21k genes] (41 MB).

  • sce : snRNA-seq data from the Human DLPFC. [77k nuclei x 36k genes] (172 MB)

  • sce_DLPFC_example: Sub-set of sce useful for testing. [10k nuclei x 557 genes] (49 MB)

## Access and snRNA-seq example data
if (!exists("sce_DLPFC_example")) sce_DLPFC_example <- fetch_deconvo_data("sce_DLPFC_example")
#> 2024-12-16 18:01:41.782943 loading file /github/home/.cache/R/BiocFileCache/30161ee4ad2_sce_DLPFC_example.Rdata%3Frlkey%3Dv3z4u8ru0d2y12zgdl1az07q9%26st%3D1dcfqc1i%26dl%3D1

## Explore snRNA-seq data in sce_DLPFC_example
sce_DLPFC_example
#> class: SingleCellExperiment 
#> dim: 557 10000 
#> metadata(3): Samples cell_type_colors cell_type_colors_broad
#> assays(1): logcounts
#> rownames(557): GABRD PRDM16 ... AFF2 MAMLD1
#> rowData names(7): source type ... gene_type binomial_deviance
#> colnames(10000): 8_AGTGACTGTAGTTACC-1 17_GCAGCCAGTGAGTCAG-1 ...
#>   12_GGACGTCTCTGACAGT-1 1_GGTTAACTCTCTCTAA-1
#> colData names(32): Sample Barcode ... cellType_layer layer_annotation
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):

## Access Bulk RNA-seq data
if (!exists("rse_gene")) rse_gene <- fetch_deconvo_data("rse_gene")
#> 2024-12-16 18:01:43.743706 loading file /github/home/.cache/R/BiocFileCache/301276d31cb_rse_gene.Rdata%3Frlkey%3Dsw2djr71y954yw4o3xrmjv59b%26dl%3D1

## Explore bulk data in rse_gene
rse_gene
#> class: RangedSummarizedExperiment 
#> dim: 21745 110 
#> metadata(1): SPEAQeasy_settings
#> assays(2): counts logcounts
#> rownames(21745): ENSG00000227232.5 ENSG00000278267.1 ...
#>   ENSG00000210195.2 ENSG00000210196.2
#> rowData names(11): Length gencodeID ... gencodeTx passExprsCut
#> colnames(110): 2107UNHS-0291_Br2720_Mid_Bulk
#>   2107UNHS-0291_Br2720_Mid_Cyto ... AN00000906_Br8667_Mid_Cyto
#>   AN00000906_Br8667_Mid_Nuc
#> colData names(80): SAMPLE_ID Sample ... diagnosis qc_class

For more details on this dataset, and an example deconvolution run check out the Vignette: Deconvolution Benchmark in Human DLPFC.

Marker Finding

Using MeanRatio to Find Cell Type Markers

Accurate deconvolution requires highly specific marker genes for each cell type to be defined. To select genes specific for each cell type, you can evaluate the MeanRatio for each gene x each cell type, where MeanRatio = mean(Expression of target cell type) / mean(Expression of highest non-target cell type).

These values can be calculated for a single cell RNA-seq dataset using get_mean_ratio(). This can also work for spatially-resolved transcriptomics datasets. That is, get_mean_ratio() can also work with SpatialExperiment::SpatialExperiment() objects.

## find marker genes with get_mean_ratio
marker_stats <- get_mean_ratio(
    sce_DLPFC_example,
    cellType_col = "cellType_broad_hc",
    gene_name = "gene_name",
    gene_ensembl = "gene_id"
)

## explore tibble output, gene with high MeanRatio values are good marker genes
marker_stats
#> # A tibble: 762 × 10
#>    gene       cellType.target mean.target cellType.2nd mean.2nd MeanRatio
#>    <chr>      <fct>                 <dbl> <fct>           <dbl>     <dbl>
#>  1 CD22       Oligo                  1.36 OPC            0.0730      18.6
#>  2 LINC01608  Oligo                  2.39 Micro          0.142       16.8
#>  3 FOLH1      Oligo                  1.59 OPC            0.101       15.7
#>  4 SLC5A11    Oligo                  2.14 Micro          0.145       14.7
#>  5 AC012494.1 Oligo                  2.42 OPC            0.169       14.3
#>  6 ST18       Oligo                  4.65 OPC            0.329       14.1
#>  7 MAG        Oligo                  1.44 Astro          0.103       14.0
#>  8 ANLN       Oligo                  1.60 Micro          0.115       13.9
#>  9 CLDN11     Oligo                  1.82 EndoMural      0.146       12.5
#> 10 MOG        Oligo                  2.06 OPC            0.185       11.1
#> # ℹ 752 more rows
#> # ℹ 4 more variables: MeanRatio.rank <int>, MeanRatio.anno <chr>,
#> #   gene_ensembl <chr>, gene_name <chr>

For more discussion of finding marker genes with DeconvoBuddies check out the Vignette: Finding Marker Genes with DeconvoBuddies.

Plotting Tools

Creating A Cell Type Color Pallet

As you work with single-cell data and deconvolution outputs, it is very useful to establish a consistent color pallet to use across different plots. The function create_cell_colors() returns a named vector of hex values, corresponding to the names of cell types. This list is compatible with functions like ggplot2::scale_color_manual().

There are three pallets to choose from to generate colors:

  • “classic” (default): "Set1" from RColorBrewer - max 9 colors

  • “gg”: Equi-distant hues, same process for selecting colors as ggplot - no maximum number

  • “tableau”: tableau20 color set - max 20 colors

test_cell_types <- c("cell_A", "cell_B", "cell_C", "cell_D", "cell_E")

## Preview "classic" colors
test_cell_colors_classic <- create_cell_colors(
    cell_types = test_cell_types,
    pallet = "classic",
    preview = TRUE
)


## Preview "gg" colors
test_cell_colors_gg <- create_cell_colors(
    cell_types = test_cell_types,
    pallet = "gg",
    preview = TRUE
)


## Preview "tableau" colors
test_cell_colors_tableau <- create_cell_colors(
    cell_types = test_cell_types,
    pallet = "tableau",
    preview = TRUE
)


## Check the color hex codes for "tableau"
test_cell_colors_tableau
#>    cell_A    cell_B    cell_C    cell_D    cell_E 
#> "#1F77B4" "#AEC7E8" "#FF7F0E" "#FFBB78" "#2CA02C"

If there are sub-cell types with consistent delimiters, the split argument creates a scale of related colors. This helps expand on the maximum number of colors and makes your pallet flexible when considering different ‘resolutions’ of cell types. This works by ignoring any prefixes after the split character. In this example below, Excit_01 and Excit_02 will just be considered as Excit since split = "_".

my_cell_types <- levels(sce_DLPFC_example$cellType_hc)
## Ignore any suffix after the "_" character by using the "split" argument
my_cell_colors <- create_cell_colors(
    cell_types = my_cell_types,
    pallet = "classic",
    preview = TRUE,
    split = "_"
)

Plot Expression of Top Markers

The function plot_marker_express() helps quickly visualize expression of top marker genes, by ordering and annotating violin plots of expression over cell type. Here we’ll plot the expression of the top 6 marker genes for Astrocytes.

# plot expression of the top 6 Astro marker genes
plot_marker_express(
    sce = sce_DLPFC_example,
    stats = marker_stats,
    cell_type = "Astro",
    n_genes = 6,
    cellType_col = "cellType_broad_hc",
    color_pal = my_cell_colors
)

The violin plots of gene expression confirm the cell type specificity of these marker genes, most of the nuclei with high expression of these six genes are astrocytes (Astro).

Plot Composition Bar Plot

The output of deconvolution are cell type estimates that sum to 1. A good visulization for these predictions is a stacked bar plot. The function plot_composition_bar() creates a stacked bar plot showing the cell type proportion for each sample, or the average proportion for a group of samples. In this example data, the RNum is a sample (donor) identifier and Dx is a group variable for the diagnosis status of the donors.

# load example data
data("rse_bulk_test")
data("est_prop")

# access the colData of a test rse dataset
pd <- colData(rse_bulk_test) |>
    as.data.frame()

## pivot data to long format and join with test estimated proportion data
est_prop_long <- est_prop |>
    rownames_to_column("RNum") |>
    pivot_longer(!RNum, names_to = "cell_type", values_to = "prop") |>
    left_join(pd)
#> Joining with `by = join_by(RNum)`

## explore est_prop_long
est_prop_long
#> # A tibble: 500 × 7
#>    RNum  cell_type   prop BrNum Sex   Dx        Age
#>    <chr> <chr>      <dbl> <chr> <chr> <chr>   <dbl>
#>  1 R913  cell_A    0.380  Br001 F     Case     71.9
#>  2 R913  cell_B    0.240  Br001 F     Case     71.9
#>  3 R913  cell_C    0.162  Br001 F     Case     71.9
#>  4 R913  cell_D    0.108  Br001 F     Case     71.9
#>  5 R913  cell_E    0.111  Br001 F     Case     71.9
#>  6 R602  cell_A    0.443  Br002 F     Control  73.1
#>  7 R602  cell_B    0.207  Br002 F     Control  73.1
#>  8 R602  cell_C    0.0743 Br002 F     Control  73.1
#>  9 R602  cell_D    0.160  Br002 F     Control  73.1
#> 10 R602  cell_E    0.115  Br002 F     Control  73.1
#> # ℹ 490 more rows

## the composition bar plot shows cell type composition for Sample
plot_composition_bar(est_prop_long,
    x_col = "RNum",
    add_text = FALSE
) +
    ggplot2::scale_fill_manual(values = test_cell_colors_classic)


## the composition bar plot shows the average cell type composition for each Dx
plot_composition_bar(est_prop_long, x_col = "Dx") +
    ggplot2::scale_fill_manual(values = test_cell_colors_classic)

We can see that the mean proportions of cell types A through E are very similar across the Dx groups (Case and Control). In this case, this is expected given that we are using simulated data. Although if you look across each donor with RNum we can see more variability across the simulated data.

Since you are now familiar with the basic overview of DeconvoBuddies, you are now ready to dive deeper into:

Reproducibility

The DeconvoBuddies package (Huuki-Myers, Maynard, Hicks, Zandi, Kleinman, Hyde, Goes, and Collado-Torres, 2024) was made possible thanks to:

  • R (R Core Team, 2024)
  • BiocStyle (Oleś, 2024)
  • knitr (Xie, 2024)
  • RefManageR (McLean, 2017)
  • rmarkdown (Allaire, Xie, Dervieux, McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng, Chang, and Iannone, 2024)
  • sessioninfo (Wickham, Chang, Flight, Müller, and Hester, 2021)
  • testthat (Wickham, 2011)

This package was developed using biocthis.

Code for creating the vignette

## Create the vignette
library("rmarkdown")
system.time(render("DeconvoBuddies.Rmd", "BiocStyle::html_document"))

## Extract the R code
library("knitr")
knit("DeconvoBuddies.Rmd", tangle = TRUE)

Date the vignette was generated.

#> [1] "2024-12-16 18:01:48 UTC"

Wallclock time spent generating the vignette.

#> Time difference of 18.641 secs

R session information.

#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.2 (2024-10-31)
#>  os       Ubuntu 24.04.1 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language en
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       UTC
#>  date     2024-12-16
#>  pandoc   3.5 @ /usr/bin/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#>  package              * version   date (UTC) lib source
#>  abind                  1.4-8     2024-09-12 [1] RSPM (R 4.4.0)
#>  AnnotationDbi          1.68.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  AnnotationHub          3.14.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  attempt                0.3.1     2020-05-03 [1] RSPM (R 4.4.0)
#>  backports              1.5.0     2024-05-23 [1] RSPM (R 4.4.0)
#>  beachmat               2.22.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  beeswarm               0.4.0     2021-06-01 [1] RSPM (R 4.4.0)
#>  benchmarkme            1.0.8     2022-06-12 [1] RSPM (R 4.4.0)
#>  benchmarkmeData        1.0.4     2020-04-23 [1] RSPM (R 4.4.0)
#>  bibtex                 0.5.1     2023-01-26 [1] RSPM (R 4.4.0)
#>  Biobase              * 2.66.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocFileCache          2.14.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocGenerics         * 0.52.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocIO                 1.16.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocManager            1.30.25   2024-08-28 [2] CRAN (R 4.4.2)
#>  BiocNeighbors          2.0.1     2024-11-28 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocParallel           1.40.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocSingular           1.22.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocStyle            * 2.34.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  BiocVersion            3.20.0    2024-10-21 [2] Bioconductor 3.20 (R 4.4.2)
#>  Biostrings             2.74.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  bit                    4.5.0.1   2024-12-03 [1] RSPM (R 4.4.0)
#>  bit64                  4.5.2     2024-09-22 [1] RSPM (R 4.4.0)
#>  bitops                 1.0-9     2024-10-03 [1] RSPM (R 4.4.0)
#>  blob                   1.2.4     2023-03-17 [1] RSPM (R 4.4.0)
#>  bluster                1.16.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  bookdown               0.41      2024-10-16 [1] RSPM (R 4.4.0)
#>  bslib                  0.8.0     2024-07-29 [2] RSPM (R 4.4.0)
#>  cachem                 1.1.0     2024-05-16 [2] RSPM (R 4.4.0)
#>  cli                    3.6.3     2024-06-21 [2] RSPM (R 4.4.0)
#>  cluster                2.1.8     2024-12-11 [3] RSPM (R 4.4.0)
#>  codetools              0.2-20    2024-03-31 [3] CRAN (R 4.4.2)
#>  colorspace             2.1-1     2024-07-26 [1] RSPM (R 4.4.0)
#>  config                 0.3.2     2023-08-30 [1] RSPM (R 4.4.0)
#>  cowplot                1.1.3     2024-01-22 [1] RSPM (R 4.4.0)
#>  crayon                 1.5.3     2024-06-20 [2] RSPM (R 4.4.0)
#>  curl                   6.0.1     2024-11-14 [2] RSPM (R 4.4.0)
#>  data.table             1.16.4    2024-12-06 [1] RSPM (R 4.4.0)
#>  DBI                    1.2.3     2024-06-02 [1] RSPM (R 4.4.0)
#>  dbplyr                 2.5.0     2024-03-19 [1] RSPM (R 4.4.0)
#>  DeconvoBuddies       * 0.99.8    2024-12-16 [1] Bioconductor
#>  DelayedArray           0.32.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  desc                   1.4.3     2023-12-10 [2] RSPM (R 4.4.0)
#>  digest                 0.6.37    2024-08-19 [2] RSPM (R 4.4.0)
#>  doParallel             1.0.17    2022-02-07 [1] RSPM (R 4.4.0)
#>  dotCall64              1.2       2024-10-04 [1] RSPM (R 4.4.0)
#>  dplyr                * 1.1.4     2023-11-17 [1] RSPM (R 4.4.0)
#>  dqrng                  0.4.1     2024-05-28 [1] RSPM (R 4.4.0)
#>  DT                     0.33      2024-04-04 [1] RSPM (R 4.4.0)
#>  edgeR                  4.4.1     2024-12-02 [1] Bioconductor 3.20 (R 4.4.2)
#>  evaluate               1.0.1     2024-10-10 [2] RSPM (R 4.4.0)
#>  ExperimentHub          2.14.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  fansi                  1.0.6     2023-12-08 [2] RSPM (R 4.4.0)
#>  farver                 2.1.2     2024-05-13 [1] RSPM (R 4.4.0)
#>  fastmap                1.2.0     2024-05-15 [2] RSPM (R 4.4.0)
#>  fields                 16.3      2024-09-30 [1] RSPM (R 4.4.0)
#>  filelock               1.0.3     2023-12-11 [1] RSPM (R 4.4.0)
#>  foreach                1.5.2     2022-02-02 [1] RSPM (R 4.4.0)
#>  fs                     1.6.5     2024-10-30 [2] RSPM (R 4.4.0)
#>  generics               0.1.3     2022-07-05 [1] RSPM (R 4.4.0)
#>  GenomeInfoDb         * 1.42.1    2024-11-28 [1] Bioconductor 3.20 (R 4.4.2)
#>  GenomeInfoDbData       1.2.13    2024-12-13 [1] Bioconductor
#>  GenomicAlignments      1.42.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  GenomicRanges        * 1.58.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  ggbeeswarm             0.7.2     2023-04-29 [1] RSPM (R 4.4.0)
#>  ggplot2                3.5.1     2024-04-23 [1] RSPM (R 4.4.0)
#>  ggrepel                0.9.6     2024-09-07 [1] RSPM (R 4.4.0)
#>  glue                   1.8.0     2024-09-30 [2] RSPM (R 4.4.0)
#>  golem                  0.5.1     2024-08-27 [1] RSPM (R 4.4.0)
#>  gridExtra              2.3       2017-09-09 [1] RSPM (R 4.4.0)
#>  gtable                 0.3.6     2024-10-25 [1] RSPM (R 4.4.0)
#>  htmltools              0.5.8.1   2024-04-04 [2] RSPM (R 4.4.0)
#>  htmlwidgets            1.6.4     2023-12-06 [2] RSPM (R 4.4.0)
#>  httpuv                 1.6.15    2024-03-26 [2] RSPM (R 4.4.0)
#>  httr                   1.4.7     2023-08-15 [1] RSPM (R 4.4.0)
#>  igraph                 2.1.2     2024-12-07 [1] RSPM (R 4.4.0)
#>  IRanges              * 2.40.1    2024-12-05 [1] Bioconductor 3.20 (R 4.4.2)
#>  irlba                  2.3.5.1   2022-10-03 [1] RSPM (R 4.4.0)
#>  iterators              1.0.14    2022-02-05 [1] RSPM (R 4.4.0)
#>  jquerylib              0.1.4     2021-04-26 [2] RSPM (R 4.4.0)
#>  jsonlite               1.8.9     2024-09-20 [2] RSPM (R 4.4.0)
#>  KEGGREST               1.46.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  knitr                  1.49      2024-11-08 [2] RSPM (R 4.4.0)
#>  labeling               0.4.3     2023-08-29 [1] RSPM (R 4.4.0)
#>  later                  1.4.1     2024-11-27 [2] RSPM (R 4.4.0)
#>  lattice                0.22-6    2024-03-20 [3] CRAN (R 4.4.2)
#>  lazyeval               0.2.2     2019-03-15 [1] RSPM (R 4.4.0)
#>  lifecycle              1.0.4     2023-11-07 [2] RSPM (R 4.4.0)
#>  limma                  3.62.1    2024-11-03 [1] Bioconductor 3.20 (R 4.4.2)
#>  locfit                 1.5-9.10  2024-06-24 [1] RSPM (R 4.4.0)
#>  lubridate              1.9.4     2024-12-08 [1] RSPM (R 4.4.0)
#>  magick                 2.8.5     2024-09-20 [1] RSPM (R 4.4.0)
#>  magrittr               2.0.3     2022-03-30 [2] RSPM (R 4.4.0)
#>  maps                   3.4.2.1   2024-11-10 [1] RSPM (R 4.4.0)
#>  Matrix                 1.7-1     2024-10-18 [3] CRAN (R 4.4.2)
#>  MatrixGenerics       * 1.18.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  matrixStats          * 1.4.1     2024-09-08 [1] RSPM (R 4.4.0)
#>  memoise                2.0.1     2021-11-26 [2] RSPM (R 4.4.0)
#>  metapod                1.14.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  mime                   0.12      2021-09-28 [2] RSPM (R 4.4.0)
#>  munsell                0.5.1     2024-04-01 [1] RSPM (R 4.4.0)
#>  paletteer              1.6.0     2024-01-21 [1] RSPM (R 4.4.0)
#>  pillar                 1.9.0     2023-03-22 [2] RSPM (R 4.4.0)
#>  pkgconfig              2.0.3     2019-09-22 [2] RSPM (R 4.4.0)
#>  pkgdown                2.1.1     2024-09-17 [1] RSPM (R 4.4.0)
#>  plotly                 4.10.4    2024-01-13 [1] RSPM (R 4.4.0)
#>  plyr                   1.8.9     2023-10-02 [1] RSPM (R 4.4.0)
#>  png                    0.1-8     2022-11-29 [1] RSPM (R 4.4.0)
#>  promises               1.3.2     2024-11-28 [2] RSPM (R 4.4.0)
#>  purrr                  1.0.2     2023-08-10 [2] RSPM (R 4.4.0)
#>  R6                     2.5.1     2021-08-19 [2] RSPM (R 4.4.0)
#>  rafalib                1.0.0     2015-08-09 [1] RSPM (R 4.4.0)
#>  ragg                   1.3.3     2024-09-11 [2] RSPM (R 4.4.0)
#>  rappdirs               0.3.3     2021-01-31 [2] RSPM (R 4.4.0)
#>  RColorBrewer           1.1-3     2022-04-03 [1] RSPM (R 4.4.0)
#>  Rcpp                   1.0.13-1  2024-11-02 [2] RSPM (R 4.4.0)
#>  RCurl                  1.98-1.16 2024-07-11 [1] RSPM (R 4.4.0)
#>  RefManageR           * 1.4.0     2022-09-30 [1] RSPM (R 4.4.0)
#>  rematch2               2.1.2     2020-05-01 [2] RSPM (R 4.4.0)
#>  reshape2               1.4.4     2020-04-09 [1] RSPM (R 4.4.0)
#>  restfulr               0.0.15    2022-06-16 [1] RSPM (R 4.4.0)
#>  rjson                  0.2.23    2024-09-16 [1] RSPM (R 4.4.0)
#>  rlang                  1.1.4     2024-06-04 [2] RSPM (R 4.4.0)
#>  rmarkdown              2.29      2024-11-04 [2] RSPM (R 4.4.0)
#>  Rsamtools              2.22.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  RSQLite                2.3.9     2024-12-03 [1] RSPM (R 4.4.0)
#>  rsvd                   1.0.5     2021-04-16 [1] RSPM (R 4.4.0)
#>  rtracklayer            1.66.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  S4Arrays               1.6.0     2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  S4Vectors            * 0.44.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  sass                   0.4.9     2024-03-15 [2] RSPM (R 4.4.0)
#>  ScaledMatrix           1.14.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  scales                 1.3.0     2023-11-28 [1] RSPM (R 4.4.0)
#>  scater                 1.34.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  scran                  1.34.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  scuttle                1.16.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  sessioninfo          * 1.2.2     2021-12-06 [2] RSPM (R 4.4.0)
#>  shiny                  1.10.0    2024-12-14 [2] RSPM (R 4.4.0)
#>  shinyWidgets           0.8.7     2024-09-23 [1] RSPM (R 4.4.0)
#>  SingleCellExperiment   1.28.1    2024-11-10 [1] Bioconductor 3.20 (R 4.4.2)
#>  spam                   2.11-0    2024-10-03 [1] RSPM (R 4.4.0)
#>  SparseArray            1.6.0     2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  SpatialExperiment      1.16.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  spatialLIBD            1.18.0    2024-11-07 [1] Bioconductor 3.20 (R 4.4.2)
#>  statmod                1.5.0     2023-01-06 [1] RSPM (R 4.4.0)
#>  stringi                1.8.4     2024-05-06 [2] RSPM (R 4.4.0)
#>  stringr                1.5.1     2023-11-14 [2] RSPM (R 4.4.0)
#>  SummarizedExperiment * 1.36.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  systemfonts            1.1.0     2024-05-15 [2] RSPM (R 4.4.0)
#>  textshaping            0.4.1     2024-12-06 [2] RSPM (R 4.4.0)
#>  tibble               * 3.2.1     2023-03-20 [2] RSPM (R 4.4.0)
#>  tidyr                * 1.3.1     2024-01-24 [1] RSPM (R 4.4.0)
#>  tidyselect             1.2.1     2024-03-11 [1] RSPM (R 4.4.0)
#>  timechange             0.3.0     2024-01-18 [1] RSPM (R 4.4.0)
#>  UCSC.utils             1.2.0     2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  utf8                   1.2.4     2023-10-22 [2] RSPM (R 4.4.0)
#>  vctrs                  0.6.5     2023-12-01 [2] RSPM (R 4.4.0)
#>  vipor                  0.4.7     2023-12-18 [1] RSPM (R 4.4.0)
#>  viridis                0.6.5     2024-01-29 [1] RSPM (R 4.4.0)
#>  viridisLite            0.4.2     2023-05-02 [1] RSPM (R 4.4.0)
#>  withr                  3.0.2     2024-10-28 [2] RSPM (R 4.4.0)
#>  xfun                   0.49      2024-10-31 [2] RSPM (R 4.4.0)
#>  XML                    3.99-0.17 2024-06-25 [1] RSPM (R 4.4.0)
#>  xml2                   1.3.6     2023-12-04 [2] RSPM (R 4.4.0)
#>  xtable                 1.8-4     2019-04-21 [2] RSPM (R 4.4.0)
#>  XVector                0.46.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#>  yaml                   2.3.10    2024-07-26 [2] RSPM (R 4.4.0)
#>  zlibbioc               1.52.0    2024-10-29 [1] Bioconductor 3.20 (R 4.4.2)
#> 
#>  [1] /__w/_temp/Library
#>  [2] /usr/local/lib/R/site-library
#>  [3] /usr/local/lib/R/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

Bibliography

This vignette was generated using BiocStyle (Oleś, 2024) with knitr (Xie, 2024) and rmarkdown (Allaire, Xie, Dervieux et al., 2024) running behind the scenes.

Citations made with RefManageR (McLean, 2017).

[1] J. Allaire, Y. Xie, C. Dervieux, et al. rmarkdown: Dynamic Documents for R. R package version 2.29. 2024. URL: https://github.com/rstudio/rmarkdown.

[2] L. A. Huuki-Myers, K. R. Maynard, S. C. Hicks, et al. DeconvoBuddies: a R/Bioconductor package with deconvolution helper functions. https://github.com/LieberInstitute/DeconvoBuddies/DeconvoBuddies - R package version 0.99.8. 2024. DOI: 10.18129/B9.bioc.DeconvoBuddies. URL: http://www.bioconductor.org/packages/DeconvoBuddies.

[3] L. A. Huuki-Myers, K. D. Montgomery, S. H. Kwon, et al. “Benchmark of cellular deconvolution methods using a multi-assay reference dataset from postmortem human prefrontal cortex”. In: bioRxiv (2024). DOI: 10.1101/2024.02.09.579665. URL: https://doi.org/10.1101/2024.02.09.579665.

[4] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.

[5] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.34.0. 2024. DOI: 10.18129/B9.bioc.BiocStyle. URL: https://bioconductor.org/packages/BiocStyle.

[6] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2024. URL: https://www.R-project.org/.

[7] H. Wickham. “testthat: Get Started with Testing”. In: The R Journal 3 (2011), pp. 5–10. URL: https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

[8] H. Wickham, W. Chang, R. Flight, et al. sessioninfo: R Session Information. R package version 1.2.2, https://r-lib.github.io/sessioninfo/. 2021. URL: https://github.com/r-lib/sessioninfo#readme.

[9] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.49. 2024. URL: https://yihui.org/knitr/.